Nov 30, 2017

Diego Donzis

Associate Professor Departments of Aerospace Engineering, University of Texas A&M, College Station, TX

ABSTRACT:

Turbulence at high Reynolds numbers is replete with strong fluctuations in vorticity, dissipation and other features of small-scale motion, which can be thousands times their respective mean values, a phenomenon called intermittency. Even at low Reynolds numbers, gradients can be extreme due to the appearance of shock waves in compressible flows. In order to study these very localized fluctuations in space and time, sufficient resolution is required if all the details are to be captured faithfully in direct numerical simulations (DNS) to study fundamental issues in turbulence. This poses extraordinary challenges in simulations at high Reynolds or Mach numbers. We discuss computational challenges in current simulations and introduce a novel concept for simulations at extreme levels of parallelism which exploits relaxed synchronizations between processing elements. In the second part, we use a large DNS database of incompressible and compressible turbulence at very high resolutions to study different aspects of extreme events in flows of increasing complexity, from incompressible isotropic turbulence to shock-turbulence interactions. We start by addressing the nature of extreme fluctuations, especially of velocity gradients, in high-Reynolds-number incompressible turbulence. We then extend the analysis to compressible turbulence especially as it relates to large fluctuations of thermodynamic variables. Finally we discuss shock-turbulence interactions

to unveil the relation between extreme incompressible gradients and shocks. This leads to new scaling laws that collapse and explain data in the literature. We conclude with an outlook of potential unifying principles in the scaling of incompressible and compressible turbulence.

BIOGRAPHY:

Dr. Diego A. Donzis is associate professor in the Department of Aerospace Engineering at Texas A\&M University where he is also co-director of the National Aerothermochemistry Lab and directs the Turbulence and Advanced Computations Lab (TACL). He received his PhD from the Georgia Institute of Technology and continued his research at the University of Maryland and the International Centre for Theoretical Physics, Italy. His main interests are in high-performance computing at extreme scales, and the physics of turbulence and turbulent mixing in incompressible and compressible flows. Among his major recognitions Dr. Donzis received an NSF CAREER award, the Francois Frenkiel Award for mether American Physical Society, two TEES Young Faculty Award for research, a McElmurry Teaching Excellence Award, and is a best graduate from Argentina by the National Academy of Engineering.